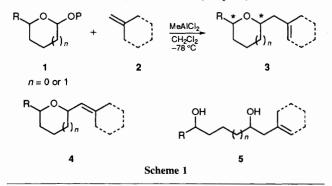
1843

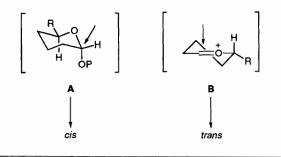
Intermolecular Oxonium–Ene Reaction: a New Entry to Stereocontrolled Synthesis of Tetrahydropyrans


Koichi Mikami* and Hiroyuki Kishino

Department of Chemical Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan

The intermolecular ene-type reaction with a lactol-derived oxonium ion intermediate as an enophile is shown to exhibit a high level of diastereofacial selectivity to afford predominantly the 2,6-*trans*-tetrahydropyrans in spite of the diastereoisomeric ratio of the starting δ -lactol derivatives.

The ene reaction involving carbonyl compounds, aldehydes in particular, as enophiles (carbonyl-ene reaction) has been emerging as a new methodology for stereochemical control. However, the types of enophile explored so far have been severely limited.¹ Herein we report a new type of intermolecular ene reaction with a lactol²-derived oxonium ion intermediate as an enophile (oxonium-ene reaction) (Scheme 1). The ene reactions involving oxonium ion intermediates have been reported so far only for the intramolecular cases.³


Typical experimental procedure for the oxonium–ene reactions is as follows. To a dichloromethane solution of lactol or its derivative 1 was added MeAlCl₂ $^+$ (1 equiv.) at -78 °C. To

[†] Me₂AlCl provides a lower yield of the oxonium-ene product 3.

the mixture was then added olefin 2 (1.5 equiv.) at that temperature.‡ After several hours, the usual work-up followed by silica gel chromatography gave the oxonium-ene product 3 without any detectable amount of the regioisomeric olefin 4 and lactol-ene product 5. Other Lewis acids such as $SnCl_4$ and $TiCl_4$, which provide the chlorinated product, afford lower yields of the oxonium-ene products 3.

Representative results of the oxonium-ene reaction are summarized in Table 1. The present reaction is characterized by the exclusive ene-regioselectivity. Particularly interesting is that the reaction of lactol derivatives give higher yields of the oxonium-ene products **3** in a high level of *trans*-diastereofacial selectivity along with their independence of the diastereoisomeric ratio of the starting δ -lactol derivatives (entries 6–8).

 \ddagger Above -30 °C, the lactol-ene product 5 was formed.

Table 1 Intermolecular oxonium-ene reactions^a

Entry	Enophile 1	Ene 2	Time/h	Product 3	Yield (%)	Diastereofacial selectivity ^b
1	CO YOOH	\searrow	2	\mathcal{O}	34	_
2		\sim	2	\sim	41 ^c	_
3			16	,	50	_
4		\searrow	16		38 ^d	_
5	∼ °y⊷ ^{OBn}	\bigtriangledown	2	John D	91	1:1
6	OOBn		2	$\mathbf{\hat{\mathbf{v}}}$	63	>10:1
7	O .OBn		2	,	60	>10:1
8		\leq	2		(—) ^e	>10:1

^{*a*} Unless otherwise noted, all reactions were carried out as described in the text. ^{*b*} For the stereochemical assignment, see ref. 4. ^{*c*} 2.5 Equiv. each of the lactol and MeAlCl₂ were used. ^{*d*} 2:1 Diastereoisomeric mixture with respect to the C-2 and C-1'. ^{*e*} 3:1 Diastereoisomeric mixture with respect to the C-2 and C-1', not isolated.

These results show clearly that the present reactions would rarely proceed in a $S_N 2$ fashion (A) leading to the *cis*-product from the *trans*-lactol derivatives, but involve mainly the oxonium ion intermediate (B) leading eventually to the same 2,6-*trans*-tetrahydropyran⁴ from either diastereoisomer of the starting δ -lactol ($S_N 1$ fashion). However, the five-membered oxonium ion intermediate would be conformationally rather flexible⁵ and hence lead to the lower diastereofacial selectivity (entry 5).⁴

In summary, we have disclosed herein the first example of the intermolecular ene reaction with an oxonium ion, which provides a simple, stereocontrolled route to tetrahydropyrans.

Received, 30th June 1993; Com. 3/03777K

References

 Reviews on ene reactions: K. Mikami and M. Shimizu, *Chem. Rev.*, 1992, **92**, 1021; B. B. Snider, *Comprehensive Organic Synthesis*; ed. B. M. Trost and I. Fleming, Pergamon, London, 1991, vols. 2 and 5; W. Oppolzer and V. Snieckus, Angew. Chem., Int. Ed. Engl., 1978, 17, 476; H. M. R. Hoffmann, Angew. Chem., Int. Ed. Engl., 1979, 8, 556.

- 2 Recently, γ- and δ-lactols have been reported to react with methylating reagents in the presence of BF₃OEt₂ affording the methylated furans and pyrans with a high level of stereocontrol; K. Tomooka, K. Matsuzawa, K. Suzuki and G. Tsuchihashi, *Tetrahedron Lett.*, 1987, 28, 6339.
- L. E. Overman and A. S. Thompson, J. Am. Chem. Soc., 1988, 110, 2248; T. A. Blumenkopf, M. Bratz, A. Castenada, G. C. Look, L. E. Overman, D. Rodriguez and A. S. Thompson, J. Am. Chem. Soc., 1990, 112, 4386; T. A. Blumenkopf, G. C. Look and L. E. Overman, J. Am. Chem. Soc., 1990, 112, 4399.
- 4 For the stereochemical assignment based on the ¹³C NMR analysis; furans: E. L. Eliel, V. S. Rao and K. M. Pietrusiewicz, Org. Magn. Reson., 1979, 12, 461; pyrans: E. L. Eliel, M. Manonaran, K. M. Pietrusiewicz and K. D. Hargrave, Org. Magn. Reson., 1983, 21, 94.
- 5 For a general discussion on conformations of five-membered rings, see: B. Fuchs, *Topics in Stereochemistry.*, ed. E. L. Eliel and N. L. Allinger, Interscience, New York, 1978, vol. 10.